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We study the topological dynamics of the flipping mirror model of Ruijgrok and 
Cohen with one or an infinite number of particles. In particular we prove the 
topological transitivity and topological mixing up to a natural first integral for 
the one-particle model. 
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1. I N T R O D U C T I O N  

We consider two-dimensional lattice versions of the Lorentz gas ~1) or the 
Ehrenfest wind-tree model. (2) Several types of Lorentz lattice gas models 
have been introduced in the physics literature. The models fall into two 
groups: probabilistic and deterministic. The deterministic models have 
infinite memory and thus differ from the probabilistic models, which are 
Markovian in nature. The models have been intensively studied from a 
numerical point of view and exhibit rich and varied behavior. (3-9) In 
particular, the physics literature is interested in the asymptotic distribution 
of the position and velocity of the particle. The deterministic model which 
is the best candidate for having asymptotically Gaussian distribution is the 
flipping mirror  model of Ruijgrok and Cohen. (3) In this paper we study the 
topological dynamics of this model. Our  main result is that this model is 
topologically mixing (up to a first integral in certain cases). We show that 
the topological entropy is infinite and that periodic points are dense. We 
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also study the flipping mirror model with an infinite number of particles. 
Here we show that the topological entropy is infinite and that periodic 
points are dense. Finally we show that both the one- and infinite-particle 
models are not expansive. 

2. DESCRIPTION OF THE MODELS 

In the flipping mirror model (FM) two-sided mirrors, interpreted as 
scatterers or trees, are placed at the sites of the square lattice Z 2. They can 
align along either one of the diagonal directions of the lattice, and will be 
called left or right mirrors, depending on the direction (Fig. 1). The mirrors 
are placed in all possible configurations s m on Z 2, that is, Om = {L, R }z2. 
We will also consider sometimes the configuration space g2 o in which not 
all lattice sites have mirrors, that is, f20= {~ ,  L, R} z2. A single particle 
with unit speed and four possible directions propagates with unit speed 
along the bonds of the lattice and is reflected by the scatterers. A mirror 
changes from left to right and vice versa each time it is hit by a particle 
(Fig. 2). 

Let us introduce a topology on our process. We always think of the 
lattice site where the particle is located as the origin and label only the 
compass direction in which the particle travels. Thus Xi :=~?ix  
{N, S,E, W} are the phase spaces of the FM model ( i t  {0, m)). Let 
rq : Xi --* g2~ and re2: Xi ~ {N, S, E, W} be the natural projections. For 
x, y ~ X0 (resp. J(m) we define a distance by d(x, y) = 1 if ~2(x) ~ ~2(Y) and 
if rc2(x ) = rc2(y) then by the equation d(x, y) = 3 _,2 [resp. d(x, y) = 2-"2] if 
rcl(x)i,j = rq(y)i,j for all i, j satisfying max(I/I, IJl) < n and r~l(x)~,j ~ rcl(y)i,j 
for some i, j with i = n or j = n. Let f :  Xi --* X~ be the FM transformation. 
The topology where we additionally remember the location of the particle 
is not natural from the point of view of topological dynamics since it is not 
compact and from the point of view of ergodic theory since any nonatomic 
invariant probability measure must be defined on the topology induced by 
the metric d. Additionally the dynamics of the FM model is not interesting 
in this topology since all orbits are unbounded. ~~ 

Fig. 1. Right mirror and left mirror. 
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Fig. 2. The particle's motion. 

We also consider the flipping mirror model with more than one 
particle. For  a finite number of particles there is no natural compact 
topology, so we turn to an infinite number  of particles (FMo~). As long as 
it does not encounter any other particle, the dynamics of each particle is 
the same as in the FM model. If two particles arrive at the same location 
at the same time, they simply pass through each other. Particles with the 
same direction cannot occupy a single lattice site. Mirrors flip with the 
following rules: if an odd number  of particles hit the mirror at the same 
time, then the mirror flips, and if an ever number of particles hit, then the 
mirror does not flip. 

Let P be the set of all subsets of {N , S , E ,  W}. Note that the 
cardinality of the set P is 16. The set Zi := (2i • pz2 is the configuration 
space of the FMo~ model. Again ~1, n2 are the natural projections. For  
x , y ~ Z  o (resp. Zm) we define the distance d ~ ( x , y )  to be (19) -~z [resp. 
(18)-n2] if xi, j = Yid for all i, j satisfying max(]il, [Jr) < n and xi, j ~ Yid for 
some i, j with i = n or j = n. 

3. S T A T E M E N T  OF T H E O R E M S  

First we introduce the relevant definitions from topological dynamics. 
Details can be found in ref. 12 or in any standard text on topological 
dynamics or ergodic theory. 
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D e f i n i t i o n .  A homeomorphism T of a compact metric space (M, d) 
is called a cascade. 

Def in i t ion .  A cascade (M, T) is called topologically transitive if 
there exists z e M such that { T"z: n e 7/} is dense in M. A topologically 
transitive cascade is sometimes called topologically ergodic. 

D e f i n i t i o n .  A cascade (M, T) is called topologically mixing if, given 
nonempty open U, V c  M, there is no E N such that T"Uc~ V r  (g whenever 
n >~no. 

Note that the usual measure-theoretic notions of ergodicity and 
mixing with respect to any invariant Borel measure imply the respective 
topological notions. 

Def in i t ion .  A cascade is called expansive if there exists a ~ > 0 such 
that if x C y ,  then d(T~x, T"y)>6 for some ne7/.  

Two points x, y ~ M are said to be (n, e)-separated if d(Tkx, Tky) > e 
for some k = 0, 1 ..... n - 1. A set E c  M is called (n, e)-separated if x and y 
are (n, e)-separated whenever x, y e E  and x r  Then the maximum 
number of distinguishable orbit n-blocks is s(n, e) := max{card E: E c M is 
(n, e)-separated}. Next we define h(T, e) := lim sup,_~ o~ (l/n) log2 s(n, ~). 

D e f i n i t i o n .  The topological entropy of the cascade (M, T) is defined 
to be htop(T ) : = l i m ~ o §  h(T, e). 

For the rest of the paper whenever we make a statement about the set 
X (resp. Z) we mean that the statement is true for both Xo (resp. Z0) and 
X m (resp Zm). All measure-theoretic statements will be with respect to any 
product measure on X or Z which gives all cylinder sets positive mass. We 
consider first the one-particle model. The following theorem should be 
contrasted with the fact that all orbits of the FM model are unbounded 
on Z2. (~~ 

Theorem 1. I. The FM model f :  (X, d) --* (X, d) satisfies the following: 

(a) f is topologically transitive 

(b) f is not expansive 

(c) periodic points are dense, uncountable, and have zero measure 

(d) h top(f )=  oo 

II. The FM model f :  (X o, d) ~ (Xo, d) is topologically mixing. 

III. For  the FM model f :  (Xm, d ) ~  (Xm, d) the set Xm can be 
decomposed into two subsets A u B such that fA = B and f B  = A and 
f21A and f21B are topologically mixing. 
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(a) 

(b) 

(c) 

II. 
entropy. 

Next we consider the infinite-particle model. We need one more 
definition. 

Defini t ion.  A configuration x E Z is called strongly periodic if x is 
periodic and the orbit of each individual particle is closed in (Z, d~). 

Theorem 2. I. The F M ~  model f :  (Z, d~) ~ (Z, do)  satisfies the 
following: 

periodic points are dense and uncountable 

the set of strongly periodic points is uncountable 

f is not expansive 

The F M ~  model f :  (Zo, d~) --* (Zo, doo) has infinite topological 

The topological transitivity and mixing as well as the infinite entropy 
of the full occupancy case of the F M ~  model remain open. Both Theorems 
1 and 2 also hold for the flipping rotator model of Gunn and Ortufio in 
the full occupancy case. (9'1~ The proofs are completely analogous to those 
given below. 

4. P R O O F  O F  T H E O R E M  1 

First we make some more definitions which will be used in the proofs. 
Let Z" M := {0, 1,..., M -  1 }z be the set of bi-infinite sequences with an M 
symbol alphabet. Let ~:SM--*SM be the shift mapping defined by 
a({x,})  := {y,}, where Yn = xn+ i. The dynamical system (SM, a ) i s  called 
the full shift on M symbols. It is well known that the topological entropy 
of (X~, a) is log M. (12/ 

In the topology induced by the metric d the lattice site at which the 
particle is located is always called the origin; however, for the proof it is 
often convenient to think of the particle as starting at the origin and then 
traveling o n  Z 2. By the trail of x we mean the subset of Z 2 which fix hits 
(ie ~). The key point to parts (b), (c), and (d) of Theorem l is the fact t h a t  
for periodic points the trail of x is contained in a finite-width strip in Z 2. 

Let GI:={(i,j)eZ2: max(lit, ]j])~<I}. The set GI is called a box. 
Finally, let j7 := f -  1. 

I. (a) The topological transitivity follows from topological mixing in 
II, III. (12~ 

(b) Consider the configuration x defined as follows: ~l(X)i, j=R iff 
i = j and i ~> 1 or i = j -  1 and i ~> 0. The other lattice site have left mirrors 
and ~2(x) = N (see Fig. 3). The configuration x is a periodic point of period 
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Fig. 3. A periodic point with period 2. 

2. Now, given 6 > 0, fix I so large that 3 12< 6 and I >  2. For x above 
(I, - I )  ~ trail(x). Thus we can construct a new configuration x* e X which 
is identical to x except that Zl(X*)~. ~=R.  The points x and x* are 
distinct, yet their orbits are always closer than 6. Note that the point x* 
is not a periodic point, but is asymptotically periodic in both forward and 
backward time. 

(c) The simplest periodic point x was given in part (b). All periodic 
points have a similar feature: the configuration has three parts, a periodic 
"past" (the backward trail of f ) ,  a periodic "future" (the forward trail 
of f ) ,  and the "present." To see that periodic points are dense, fix a con- 
figuration x and 6 > 0 small. We construct a new configuration y which is 
periodic and within a distance 6 (in the metric d) of the point x. Fix I so 
large that 3 12< 6. Let x~ be  the restriction of the configuration x to the 
box GI. The particle will leave the box under forward iterations of f and 
also of )7.. (~~ Here leaving the box for f means that the particle is in the box 
but pointing out of the box and for ~7 that the particle is outside of the box 
(and pointing into the box). We can assume without loss of generality that 
under f the particle leaves Gt from the top and under j7 it leaves from the 
bottom (if it does not, we can increase I slightly and by filling in the extra 
lattice sites in a correct manner, that is, by two nonintersecting simple 
paths (i.e., no self-intersection), one for f and one for )7,, we can direct the 
particle out the top and bottom, respectively). Let x [  :=f"'xz and 
x I :=fn2xx, where na and n 2 are the first departure times (as defined 
above) from the box Gr. Let a + and a_ be the location (lattice site) of the 
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particle in x + and x~-, respectively, and a i= a + - a - .  We now are ready 
to define the configuration y. The configuration Y l GI will be xt; this is the 
"present" of the configuration. The "future" will be the periodic repetition 
of ~z ~(x~) on the boxes G l + n  .a for all n > 0 ,  and the "past" will be the 
periodic repetition of g l (x  + ) on the boxes G ~ -  n.  a for all n > 0. We have 
now defined y on its trail (and perhaps on some extra lattice sites which 
y does not hit). The rest of the configuration can be filled in with right 
mirrors. From the construction it is clear that in the metric d the configura- 
tion y is periodic with period a divisor of n~ + rt 2. An example is given in 
Fig. 4. For this example a + = (1, 1), a -  = (0, - 2 ) ,  a = (1, 3), nl = 2, rt 2 = 4 ,  

and the period of the motion is 6. 
To see that periodic points have zero measure, consider P~= {x e X: 

f i x  = x}.  The trail of each x ~ Pz is a periodic lift of a configuration 2 
defined on Gr Modifying Z2\trail(x) periodically with period I leads to 
other periodic points. For x ~ X periodic let [ x ]  := { y ~ X: per(y) = per(x) 
and tra i l (y)=  trail(x)}. The set ZZ\trail(x) has infinite cardinality; thus, for 

/ • / / / / / 

,/ / ~" / / I / / / 

/ �9 / / +~ / / 

/ / �9 / / / f f / 
, , , , ' ~  ~ ' ~  , , , 

/ �9 / / ~ / / / 

e" / r x ~ �9 / t / 
, , / "X~ ~.,",Q, , , , , 

/ ~ / \ / / / / 

f / \ ~ / / / / / 

/ / / / i 

Fig .  4. A p e r i o d i c  p o i n t  w i t h  p e r i o d  6. 

822/72 /1-2-20  
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each x e PI the set Ix ]  is uncountable. However, Ix ]  c {z e X: zi4 = xi, j if 
(i, j )  e t ra i l ( Ix])}  and thus [x ]  has measure zero. 

To conclude (c), we must show that there are only a countable 
number of trails. To see this, notice that the set { Ix] :  per( [x ]  ) = I} is 
a finite set, since it is determined by the motion on GI. Thus the set 
{ Ix] :  x periodic} is a countable set and the result follows. 

(d) Consider the periodic point x of period 2 constructed in part (b) 
(see Fig. 3). We will show that the set U:--{yeX: t ra i l (y)=t ra i l (x)}  
contains the full shift on M symbols for all positive M. First, clearly U is 
an f-invariant set. To see that U contains the full shift, we must view the 
set U diagonally, namely for k e 7/ consider the lines Lk defined by the 
equation i = - j  + k. The trail of x only hits the line Lak at the lattice site 
(2k, 2k) and the line L2k+l at the lattice site (2k, 2 k +  1). A point x e  U 
defines the configuration uk~ {L, R} z by 

(i) u 2k= X~+k,_~+k 

(ii) bl2k+l=Xi+k,_i+k+l 
Then U =  {u := (u~)k~z} can be though of as a set of configurations 

on the collection of lines Lk. Now taking into consideration the action of 
f on the trial of x, it is clear that the action of f [ v is equivalent to the shift 
a defined by 

If I >  0 and M = 21, then if we consider only the first I entries of uk (i.e., 
{L, R}Ic  {L, R} ~) then it follows that (U, f )  contains the full shift on M 
symbols. Thus htov(f) >t log M and since M was arbitrarily large, part (d) 
follows. 

iI. Since the cylinder sets form a basis for the topology, it is enough 
to check the mixing condition for ~//, ~ cylinder sets. Fix I so large that 
there are cylinder sets cg, ~ defined on G1 such that cg c ~//and ~ c ~U. We 
can choose nl > 0 so large that if x s cg, then f"lx is outside the box G~. (~~ 
Likewise we  choose n 2 > 0 so large that if x e 9 ,  then ~7=2x is outside the 
box G I. NOW we construct a special x e s as follows. The configuration 
x~  g? will coincide with cg on the box G~ and will coincide with rc~()7"2~) 
on the box Gz+(2I+5,0):={(i,j): m a x ( L i - 2 1 - 5 1 ,  ljL)~<I}. Now, cg 
and N are so placed that there is room (a 5 x I rectangle) to connect the 
lattice site where the particle left cg to the lattice site where the particle 
(under f )  left N by a simple path which does not enter the boxes G~ or 
G~+ ( 2 I +  5, 0). If the length of the simple paths is n3, then it is clear that 
x e ~f and f~ '  + ,2 + "~x e N. The simple path can be chosen to be of length 
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n 3 -I-i for any i~>O simply by moving the configuration ~ to be centered at 
( 2 I + 5 + i ,  O) for all i~>O and adding i empty sites (no mirrors) to the 
configuration to make the simple path i steps longer. 

III. Define A : = { x ~ X :  7c2(x )~{N,S}}  and B : = { x ~ X :  rc2(x ) 
{E, W} }. Since C = 1, the particle turns at each vertex; thus f A  = B and 

f B  = A. We call this preservation of parity. The proof of topological mixing 
is essentially the same as in II, but additionally we must preserve parity; 
thus, given c~, N, the simple paths connecting them must always either be 
of even or odd length, depending only on cg, ~.  | 

5, P R O O F  OF T H E O R E M  2 

(a) Fix a configuration x and 6 > 0 small. We construct a new con- 
figuration y which is periodic and within a distance 6 (in the metric d~) of 
the point x. Fix I so large that (i) 18-12 < 6 and (ii) at least one particle 
of x is in the box GI. Let x~ be the restriction of the configuration x to the 
box GI. Consider the sub Z 2 lattice { (i, j):  i =  j = 0 rood 2I + 1 }. Tiling this 
sublattice with the configuration x x gives rise to a configuration y. The 
motion of y is equivalent to the lift of the FM motion of x~ on Gr thought 
of as a torus. Since there are a finite number of particles and a finite 
number of states, the motion on the torus is periodic. Thus the motion of 
y is also periodic. The uncountability will be demonstrated in part (b). 

(b) For each I~> 2 we construct a tile x I of size I x  2 as follows: 

~l(X,)o,o = rq(x l ) i_  1,1 = L 

~ ( x ~ ) 0 , l  = ~ ( x l ) ~ _  1,0 = R 

~z~(xl)i,j = R for i =  0 mod 2, j =  0, 1 

r q ( X l ) i j = L  for i = l m o d 2 ,  j = 0 , 1  

rCl(X~)i.s=L for i = 0 m o d 2 ,  j = 0 ,  1 

rc2(x~)0,1 = S 

~ 2 ( x ~ ) = ~  otherwise 

Placing, for each i e ~ ,  the tile x i  with left corner at lattice sites (Ii, O) 
and filling the rest of the lattice sites arbitrarily with mirrors gives rise to 
a strong periodic point with all particles having period 4/. Figure 5 shows 
this example for I = 3 .  Since we can fill the rest of the laffice sites 
arbitrarily, the set of strong periodic points is uncountable. 

Since the particles stay in an infinite horizontal strip of width 2, we 
can construct a configuration where all the particles have closed orbits and 
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N / / \ / / \ / / \ / / X / / \ / / \ / 

Fig. 5. A strongly periodic point. 

the set of periods is 47?. For  example, this can be done by placing the tiles 
xl  at lattice sites (Ii, 21) for all i E 7?. Note that these points are not strong 
periodic points. 

(c) Given 6 > 0 ,  fix I so large that 1 8 - I 2 < &  Now consider the 
following strong periodic point x: place the tiles x2 for each i~ 7? with left 
corner at the lattice site (2i, 0). Fill in the rest of the lattice with left 
mirrors. Now construct a new point x * ~  Z which is identical to x except 
that ~l(X*)~.t=R. The points x and x* are distinct, yet their orbits are 
always closer than 6. 

(d) Fix M > 0  large. Let q / ~ Z  o be defined as follows: x ~ q / i f  and 
only if the following three conditions hold: 

(i) ~l(Xi, j) = ~ for all i, j 

(ii) ~ 2 ( x / . j ) = ~ ,  Vj<0 ,  V j > M ,  Vi 

(iii) nz(X,-j)~ {E, ~ }  for O<~j<~M, Vi 

From the definition of q / i t  is clear the q / i s  an invariant set which is 
exactly the full shift on 2 M symbols. Thus the topological entropy of f on 
Z o is greater than or equal to M. Since M was arbitrary, the topological 
entropy is infinite. | 
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